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Relationships are given between the z-average radii moments ~ and the common moments r n of a 
size distribution. Instructions are given for finding the type and width of a size distribution from 
measurements of the rzn moments. 

INTRODUCTION 

In the preceding paper ~ it was shown that the z-averages of 
the nth moments of the sphere radius rz n (n = - 1 ,  1, 2 . . . .  ) 
can be obtained from the angular dependence of the elasti- 
cally and quasielastically scattered light. These z-averages 
contain information on the width and the type of the size 
distribution. The purpose of the present paper is to show 
how the z-averages of the radius are related to the common 
average radius Y, and secondly how this information can be 
used to estimate the type and the width of the size 
distribution. 

GENERAL RELATIONSHIPS 

Let h(rN) be the frequency distribution of finding particles 
of sphere radius r N. This distribution may be normalized 
[Zh(rN) = 1], and, for instance, could be a normalized 
histogram determined by electron microscopy. A z-average 
of the nth moment of the radius is defined as: 

.--ff _ Z W N M N r ~ _  Z h ( r N ) M 2 r ~  

r~- ZwuMu Zh(ru)M~v 
(1) 

where 

w N = MNh(rN)/Y~MN h(r N) (2) 

is the weight fraction of spheres with radii r N and the mole- 
cular weight M N. 

Molecular weight and sphere radius are uniquely related. 
For compact hard spheres we have, for example: 

4/1 
M N = P T r~V (3) 

while for hollow spheres: 

M N  = p4zrr2 d (4) 

where p is the constant particle density and d the shell thick- 
ness of the hollow sphere, which is assumed here to be con- 

stant and small compared with the sphere radius (d ~ rN). 
For compact spheres it is easily verified on substitution of 
equation (3) or (4) into equation (1). 

~,h(rN)rfl¢ +6 r n+6 

r ~ -  Zh(rN)r6 - 

and for the hollow spheres 

~ h ( r N ) r ~  +4 r n+4 

r E -  Eh(rN)r4 - 74 

(5) 

(6) 

where 

m 

r m = ~ , h ( r N ) r ;  (7) 

are the moments of the frequency distribution. 
The twoequations (5) and (6) show that the z-average 

moments rz n are uniquely related to the simple moments 
if the relationship between the radius and the molecular 
weight is known, In any case the z-average moment is larger 
than the corresponding unweighted moments, i.e. 

r~/> r" (s) 

APPLICATION TO THREE TYPES OF SIZE 
DISTRIBUTION 

Two types of size distributions are considered in the litera- 
ture. These are the Schulz-Zimm distribution2'3: 

1 1 
h(r) = m~ -(ry)rnr + 1 exp(-yr)  (9) 

and the Logarithmic Normal distribution 4 

h(r) = - exp 
r 20-'2 

(lO) 

Both distributions are defined by only two parameters. The 
Schulz-Zimm distribution has been found to be a good ap- 
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Figure I Schulz--Z imm dis t r ibut ion (m = 1 ) in comparison to the 
log--normal d is t r ibut ion of same mean radius and same width 
r2/(r) 2= ( m + 2 ) / ( r n + l ) = e x p .  Note: the max imum w id th  o f  a 
Schulz--Z imm dis t r ibut ion is obtained for m = 0 which corres- 
ponds 02 = 0.693 for the log--normal d is t r ibut ion.  For larger 
e 2 > 0.693 the log--normal distribution has a pronounced skew 
shape with a long large radius tail 

proximation for fractions of linear polymers while the log- 
normal distribution is utilized in characterizing the size dis- 
tributions of emulsions or the corresponding latex particles 
which are formed in the course of emulsion polymerization. 

The types of distribution quoted can differ immensely in 
shape (see Figure 1). In order to fill the large gap between 
these types of distribution functions Greschner s and Lechner 6 
introduced the so-called three parameter distributionT-t°: 

vy (m+l ) / v  
h(r) - r m exp(-yr 2) (11) 

This distribution is evidently a generalization of the 
Schulz-Zimm distribution. It has the remarkable property 
of including several well-known distributions as special cases. 
Some of these are listed in Table 1. 

The square root distribution is highly unsymmetric and 
has a shape inbetween that of the Schulz-Zimm and the 
log-normal distribution. In a recent paper Lechner claims 
that also the log-normal distribution is well approximated 
by the three parameter distribution when v = 0.1 is chosen. 

The moments of the three distributions (9) to (11) are 
easily derived. For the 

S c h u l z -  Z i m m  distribution: 

_ _  ( m  + n)!  
r n - _ _  y - n  (12) 

m! 

__ (m +n +6)! 
rn - y - n  (compact spheres) (13) 
z (m + 6)! 

_ _  ( m  + n + 4) !  
rn - y - n  (hollow spheres) (14) 
z (m + 4) 

L o g - n o r m a l  distribution: 

r -ff = exp(na + n2o 2/2) (15) 

r~ = exp[na + (n 2 + 12n)~2/2] (compact spheres) (16) 

r-ff = exp [na + (n 2 + 8n)o2/2] (hollow spheres) (17) 

Three parameter distribution: r(_m+n+') 
- -  V y - n / v  
r "  - (18) 

r(m n+7) 
rn - y - n / v  (compact spheres) (19) 

1-' (m +n + 5 !  
_ _  P 

r n = -n /v  (hollow spheres) (20) (m;,) 
It is instructive to compare the z-averages of these moments 
with their common averages. In Table 2 this is done expli- 
citly for the first two moments. For the most probable 
(Schulz-Flory) distribution where m = 0 we find, for 
instance, an increase of the z-average radius by a factor of 7; 
for the 2nd moment the increase is a factor of 28. The cor- 
responding increase for the log-normal distribution is much 
stronger. For instance, i f ~  = 7 is assumed, the ratio 
r2/r2 becomes 49 instead of 28 for the Schulz-Zimm 
distribution. 

More relevant in actual problems is the ratio ~/(-Fz)n , be- 
cause this contains the moments which can be obtained 
from the fit of experimental scattering data. Table 3 gives a 
list of the first members for the three distributions. 

TREATMENT OF DATA 

The characteristic data of a size distribution h(r) are the 
mean radius, the width of the distribution, and, of course, 

Table I Some dist r ibut ion functions as special cases of the three 
parameter dis t r ibut ion given by equation (11 ) 

Specification h(r] Name 

m = O, v = 2 ex p (--yr  2 ) 

m = 2, v = 2 2 y r  exp( - -y r  2) 

(yr)  m + l  

m = O, v = 1 - - e x p ( - - y r )  
m ! r  

1 
m = O,v = 1/2 _ y 2  e x p ( _ y r l l 2 )  

2 

m = l , v = 3  
3 (r - r 0) 

[ ' (2/3)  a 2 

e x p [  (r---'r°)3]a3 J 

Gaussian 

Maxwell 

Schulz--Zimm 2,3 

Square root 

Stevenson I 1 

590  P O L Y M E R ,  1979,  Vol  20,  May  



z-averages: Wal te r  B u r c h a r d  

Table 2 Ratio r~z/rn of the z-average to the common average moments of the sphere radius for three size distributions of compact spheres 

Schulz-Zimm Log--normal Three parameter 

r z m + 7  
--  exp(6~)  
r m + l  

rz2 (m + 8) (m + 7) 
exp(12o 2) 

~- (m+2)  ( m + l )  

rzn (m +n + 1) ! (m!) 
- -  exp(6no2) 
r n (m + 6) I (m + n)! 

I "  - -  I "  - -  

Table 3 Rat io  rnz/(rz )n for  three size distributions of compact  spheres 

m + 7  
rz/r  exp(~)  

m + 6  

m + 8  3 _ 
r2zl(rz )2 exp -- 0 .2 

m + 7  2 

(m+9)  (m+8)  
r3 z I(r  z)3 exp(40 "2) 

(m + 7) 2 

( m + n  +6)f  
rn /(rz )n 

( m + 6 ) ! ( m + 7 )  n 

F - -  

Lr( ) 
the type o f  distribution. Let us take r~/(r)2 as a measure of  
the width. (Note that [;2/(r)2 - 1 ] r 2 = 02 is the standard 
deviation of  the distribution.) The corresponding width of  
of  the z-weighted distribution is r2/(rz)2 which determines 
the width r2/(~)2 if the type of  distribution is known. In 
principle a distributon is uniquely defined through its 
moments, but for numerical reasons the approximation is 
often unsatisfactory. In the following data handling scheme 
use i s  made of  the effect that ~/(Fz)n shows a dependence 
on r2/(r~z2 which is characteristic for the type o f  
distribution. 

For compactspheres the quantities 7zr-1 and r3/(Fz)3 are 
plotted against r2z/( gz) 2 in Figures 2 and 3 for the Schulz-  
Zimm and the log-normal  distribution. It turns out that 
r2/(Fz)2 cannot become larger than 1.167 for the Schulz-  

Zimm distribution. Thus, if larger values are obtained ex- 
perimentally the presence of  a Schulz-Zimm distribution 
can be excluded. In the next step we have to check whether 
th__ze log-normal  distribution fits the other two moments 
r z l  and r3. If  this is not the case we have to try to find a 
best set of  parameters m and u for the three parameter dis- 
tribution (which, however, is cumbersome because of  the 
unwieldy gamma functions). Once the type o f  distribution 
is found, the width and mean radius of the frequency dis- 
tribution h(r) is obtained from Table 2. 

The question arises now as to whether in the region of 
low polydispersity a Schul tz-Zimm distribution can be dis- 
tinguished from a log-normal  distribution. From Figure 2 
we see that this is certainly not possible from the values of  
the 3rd moments since almost identical curves are obtained 
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Ratio r3z/(rz)3as a function of r2z/(rz)2 

for both distri__butions. Differentiation may be possible from 
the data o f r z l  and Fz, but requires a high accuracy of  
measurement. 

In quasielastic light scattering the quantity F z r z l ,  for 
instance, is proportional to the product of the initial slope 
and t__he intercept ofDapp(q)Pz(q ) plotted against q2 while 
the rz3 moment corresponds to the curvature of  this plot. 
Finally, the second moment is proportional to the initial 
slope of  the particle scattering factor Pz(q) as a function of  
q2 where q = (41r/X) sin 0/2 and the other two quantities are 
defmed in the preceding paper. The three curves for Dapp, 
Pz(q) and DappPz(q) have been calculated for spheres of  the 
same average radius r but different width of the Schulz-  
Zimm distribution and are plotted in Figures 4a to 4c. The 
effects of  polydispersity are large, and it is hoped, therefore, 
that the technique outlined here will be useful in estimating 
the size distribution from scattering experiments in cases 
where a suitable analytic centrifuge is not at hand. Certain 
success was achieved in the past by the analysis o f  the 
elastically-scattered light and without any doubt the accuracy 
in the determination of  the size distribution is enhanced 
considerably by the combination of  the quasielastic light 
scattering with the conventional elastic light scattering. 
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Figure 4 Effect of a Schulz-Zimm distribution on elastic and 
quasielastic light scattering. (a) Particle scattering factor (elastic 
light scattering) of compact spheres for distributions with m = 0, 1 
and 4; (b) angular dependence of the apparent diffusion constant 
(quasielastic light scattering) for compact spheres; (c) the apparent 
diffusion constant multiplied by the particle scattering factor for 
compact spheres of different distribution width. Meaning of the 
figures as in (a) and (b) 
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